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Singular Integral Equation Method
in the Analysis of Interaction between
Rectangular Inclusions*

Nao-Aki NODA** Qing WANG***,
Yoshitaka UEMURA** and Yuuji KAWASHIMA**

This paper deals with numerical solutions of singular integral equations in interac-
tion problems of rectangular inclusions under various loading conditions. The body
force method is used to formulate the problems as a system of singular integral
equations with Cauchy-type or logarithmic-type singularities, where the unknowns are
the densities of body forces distributed in infinite plates having the same elastic
constants as those of the matrix and inclusions. In order to analyze the problems
accurately, the unknown functions are expressed as piecewize smooth functions using
two types of fundamental densities and power series, where the fundamental densities
are chosen to represent the symmetric stress singularity of 1/#** and the skew-
symmetric stress singularity of 1/7'™**, Then, newly defined stress intensity factors at
the end of inclusions are systematically calculated for various shapes and spacings of
two rectangular inclusions in a plate subjected to longitudinal tension, transverse
tension, and in-plane shear. The present method is found to be effective for accurate

and efficient analysis of rectangular inclusions.
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1. Introduction

In previous papers”® one of the authors has
considered numerical solutions of the singular integral
equations of the body force method for arbitrary
distributed cracks and elliptical inclusions. In these
analyses a new method has been introduced, where the
unknown functions are approximated by the product
of “fundamental densities” and power series. The new
method is found to yield rapidly converging numerical
results and smooth distributions along elliptical
boundaries. To express a single crack or elliptical
inclusion, the exact body force densities that should be
distributed in an infinite plate without crack and inclu-
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sion are available. Therefore to solve many cracks
and elliptical inclusions we can use the known density
as one of the “fundamental densities” effectively in the
numerical solutions. The application method and the
usefulness have been shown in previous papersV,
On the other hand, if we have to consider other
shapes than ellipse or crack, exact body force den-
sities are unavailable. Therefore somewhat different
numerical approach seems to be necessary for the
analysis. Recently, Chen and Nisitani®® have anal-
yzed a rectangular inclusion using the body force
method and discussed the magnitude of the singular
stress around the corner of inclusion in detail. In their
method, the unknown densities are approximated by
using the fundamental densities and linear functions.
To obtain the newly defined stress intensity factors
(SIFs), they have examined two different methods, -
one of which uses the body force densities at the
corner, and the other of which uses stress distribution
along bisector of the corner. Because of the reason
mentioned above, it can be said that to analyze rectan
gular inclusions is much more difficult than to analyze
elliptical inclusions and cracks. To find out an
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Fig. 1 Two rectangular inclusions in an infinite plate

accurate method to determine the SIFs is therefore
important for rectangular inclusion problems.

In this paper, numerical solution for two rectan-
gular inclusions as shown in Fig. 1 is considered on the
singular integral equations. The interaction will be
clarified with varying the shape and spacing the inclu-
sions under three fundamental loads. The discussion
will be useful for considering the mechanical strength
of fiber reinforced composites.

2. Numerical Solution of Singular Integral
Equations of Body Force Method

Consider two rectangular inclusions with the
same configuration in an infinite plate as shown in Fig.
1. Here, h and /£ are sizes of inclusions, d is a
parameter of distance, oz, 0y and 7zy are stresses at
infinity. Denote the shear modulus and Poisson’s
ratios of the matrix by Guw, vx and the inclusions by
Gy, vi. The problem can be expressed as a system of
singular integral equations (1) and (2), where the
unknowns are body forces densities distributed along
the imaginary boundary in two infinite plates, ‘M’ and
‘T. Here, the infinite plates ‘M’ has the same elastic
constants as those of the matrix, and the infinite plate
‘T’ has the same elastic constants as those of the
inclusions. In Eq.(1) and (2), Fu, Far, Fu, Fu(i=
1, 2) are unknown body force densities distributed in
the normal and tangential directions along the rectan-
gular boundary in the infinite plate ‘M’ or ‘I’

*%FnM(Si) _%Fnl(si)
2
+ 23| i s P
+_‘/I; e (rn, i) Far(re)dra
_L, ho (e, si)Fnl(Vk)drk—lk e (¥,
Sz‘)FtI(Vk)de]

=— G;M(Si) + 0';101(51‘)

Series A, Vol. 41, No. 3, 1998

A%FtM(Si)_%FtI(Si)

2
+1§1[_/Lk Wt (¥ ey $0) Fan(ve) dr
+‘/;k I (v, s)) Far(ra)drs
ﬁ,/L‘k h';:%"(rk, Si)FnI(Vk)d7k_£k h%’(“,

si) Fulrs) dn}

=—rou(s)+ouls) (=1,2)
(1)

2
N [/;k hZ"M(Vk, Si)FnM(Vk)de

k=1

+jL.k he(yy, s0) Far(re)drs
”‘/L‘k W (v, Si)Fnl(Tk)de“/I:k Rt (7,
Si)FtI(Tk)di]

=—un:t+ur;

2
> ‘/L‘k W5 (v, $5) Fon(72)drn

k=1

"f:[k B ¥y $8) Foe(70) drs

—/ hf"'(?’k, Si)FnI(Tk)th*/ hﬁ“(Vk,
Ly Lg

$)Fa(rdn |

=—vpiturs (i=1,2)

(2)

2
_Here, kZ:TI denotes the sum total about the prospective

boundary of each rectangular holes and inclusions,
and ]; means integrating the body forces on the
R

boundary of the kth rectangular hole in the plate M,
or the kth inclusion in the plate I. The notations omm
(s:) and z5w(s:) denote normal and shear stresses,
respectively, appearing at the point s: in plate M. As
an example, the notation 45" (7%, s;) denotes the nor-
mal stress induced at the collocation point s: on the
imaginary boundary of the ¢th rectangular hole when
the body force with unit density Fux is acting at the
point 7. on the prospective boundary of the kth rec-
tangular hole.

Equations (1) and (2) express the boundary
conditions (0ny — 0nr =0, T — Tner =0, Uy — Ur=0 and
Vu— Vi=0). Here, (U, Vi) and (Onu, Tamr) are the
displacements and tractions, respectively, on the pro-
spective boundary of rectangular holes in the infinite
plate M. On the other hand, (Uz, Vi) and (0w, 72u) are
the displacements and tractions, respectively, on the
prospective boundary of rectangular inclusions in the
infinite plate L

It is known that the body forces acting in the
normal and tangential directions are expressed as
two types, that is, symmetric mode I type and
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Fig. 2 Boundary division for Eqs.(3) and (4)

skew-symmetric mode II type to the bisector of the
corners®™®,  Figure 2 illustrates boundary divisions
for numerical solution of Eq.(1) and (2). In the
numerical solutions for cracks and elliptical
inclusions™® we do not have to divide the boundaries
because the fundamental densities for a single crack
or an elliptical inclusion are available. On the other
hand, the boundary division is newly introduced in the
author’s approach because in this problem the funda-
mental densities are only useful near the corner.

As an example, along the region B:-B-A-A; in
Fig. 2 the distributed body force densities are approx-
imated by piecewise smooth functions using power
series (Wan~W4H) and two types of fundamental
density functions, 74" and 74> (see (3)). In the
following equations, numerical solution will be shown
by taking an example for the corner A. Here, 74 is a
distance measured from the corner A, and the
eigenvalues A& and A are given as the roots of
eigenequations®®, For the corner B the solution can
be represented in the same way. For the region B.-B-
A-A; in Fig. 2 body force distributions in the normal
and tangential directions are used instead of symmet-
ric and skew-symmetric types of distributions.

F}M(7h)::f¢M(7h>4?F3%(VA)

= Wan(ra) 74 4 Wik(ra) vk

Fou(ra)=Fly(ra)+ Flir(r4)

- W}M(VA) V,’{‘l—l‘f“ W&(?’A) 7’//1\2_1

Fnl(rA)zF}Ll(yA)_FFIIIS(?/A)

=Warlra)rd ™+ Wal(ra) riz™?

Fu(ra)=Fh(ra)+ Fi(ra)

=Wi(ra)rd '+ Wi (ra)ri™?

M M
Won(ra)= Elann’f'l, Whi(ra)= nzijlbnﬁz‘l

(3)

M M
Wéz‘w(n)zgcnrﬁ", Wtﬁ‘l(m)=nz_]1dn7o§“1
o o (4)
Wb(n)=n2:1len7£’“1, W}‘I(m):rglfnrj"‘ :
M M
Wai(ra)= 2 gn7i~", Wéz‘(m)=n§:31hn7£‘“1

On the numerical method as shown in Eq.(3), (4),
the singular integral equations (1), (2) are reduced
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Table 1 Convergence of Fii and Fus, at the corner B.
(b/L=10, b/d=1/3, Gi/Gu=1(? o5=0", o5=15
=0, vr=un=0.3, plane strain in Fig. 1)

E, X (A0.76323491) Fh, P ( Az=0-62184397)

om

fr from
I'V,I (0) W,.I(O) Average

from

w(0)

from

A0

Average

SN U W

0.5379 0.5217 0.5298
0.5357 0.5233 0.5293
0.5338 0.5237 0.5287
0.5329 0.5241 0.5286

0.7535
0.7535
0.7536
0.7537

0.7534 0.7534
0.7535 0.7535
0.7536 0.7536
0.7537 0.7537

Table 2 Convergence of Fi., and Fu,z at the corner B.
(11/12:102, lz/d:2/3, GI/GM=10"2, GZ":G‘”, or=
w2y =0, vi=wy=0.3, plane strain in Fig. 1)

F,;, (3,=0.55831618)

Fy 5, (370.91168001)

M from
w;'(0)

om

vf;l (0) Average
n

from

W (0)

from A
I,K'n (0) verage

0.3016 0.3016 0.3016
0.3035 0.3035 0.3035
0.3042 0.3042 0.3042

1.7577 1.7586 1.7581
1.7680 1.7690 1.7683
1.7697 1.7707 1.7702

U W

0.3043 0.3043 0.3043(1.7709 1.7709 1.7709

Table 3 Convergence of Fia and Fii., at the corner B.
(/1/[2=102, Zz/d=2/3, G]/GM:].OZ, 07 =0%, 07=
t7y =0, vr=vy=0.3, plane strain in Fig.1)

F,;, (3=0.76323491)

Fy 3, (3,70.62184397)

M from

W, (0)

from
W, (0)

Average

from

w(0)

from A
VV;,H (O) verage

0.7945
0.8033
0.8135
0.8126
0.8120
0.8119

W 2 OV W

0.7575
0.7740
0.7881
0.7909
0.7916
0.7916

0.7760
0.7887
0.8008
0.8018
0.8018
0.8018

1.3774
1.3550
1.3440
1.3398
1.3383

1.3772 1.3773
1.3550 1.3550
1.3440 1.3440
1.3398 1.3398
1.3383 1.3383
1.3382 1.3382

1.3382

to algebraic equations for the determination of the
unknown coefficients a.~%.. These coefficients are
determined from the boundary conditions at suitably
chosen collocation points. The newly defined stress
intensity factors Kiu, Fu,x. for angular corners can be
obtained from the values of Wi(0), W(0), W(0) and
WH(0) at the corner tip®.

3. Results and Discussion

In Fig. 1, the stress intensity factors Kix and K.,
defined at corners A and B are analyzed with varying
geometrical parameters 4/k, k/d, and elastic ratio
Gi/Gu. In the following discussion, dimensionless
stress intensity factors Fix and Fu,. defined in Eq.
(5), (6) are used under plane strain condition with
n=v=0.3

Fon=Ki /oo & B,

Fun=Kuun/o*y 7 I3 (5)
Fian=Kia/o? 7 B,
Fun=Kuu,/t* 1 B~ (6)

Some examples of convergence are shown in Tables 1,
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Table 4 Fiz and Fu,a. for two rectangular inclusions at the corners A and B

0.3)

under various loading conditions (plane strain vi=vn
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difference between the results and average values are

2, 3. The results shown in these tables are obtained

using the boundary divisions shown in Fig. 2.

However, in general, the

convergency is not very good when Gi/Gu>1, L/k>

within about one percent.
10, and %/d—1.

In

Tables 1, 2, 3, Fyu and Fua values obtained from

In this study the calculations are

(0), W&(0) are indicated compared with the average

1
n

w;
values.

2/3. Then, the

=

d out when 4/L<10? and k/d

carrie

The results have good convergence, and the
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Fig. 3 Fia, Fuu. vs. h/k relations for two rectangular inclusions at the corners A and
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Fig. 4 Fiu, Fu., vs. &/d relations for two rectangular inclusions at the corners A
and B in Fig.1 (6§=0%, 05=0, 53=0, Plane strain vi=ux=0.3)

values obtained from Wi(0), W/(0) and the average
value coincide with each other in about three digits
when M=6 or 8.

Table 4 shows the intensity factors Fi,i, and Fi,a,
at the corners A and B under three fundamental loads.
Figure 3 shows Fi4, (or Fi.) vs. /b relation and Fig.
4 shows Fi.i, (or Fi,a) vs. k/d relation under longitu-
dinal tension. From those tables and figures, it is
found that the interaction is large at the corner B and
small at the corner A regardless of loading conditions.
For example, when Gi/Gu=10%, li/l=10? and k/d =2/
3 under longitudinal tension, F1,z value is about 509
of the value of a single inclusion at the corner B and
about 859 of the one at the corner A.

Figures 6 and 7 show the results under uniaxial
tension with varying tensile direction @ from 0° (xz-
direction) to 180° (—x-direction) as shown in Fig. 5.
In these figures, the interaction appears most largely
at nearly @=90° (y-direction) when G:/Gx>1. On the
other hand, when G/Gux<1 the interaction appears
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Fig. 5 Two rectangular inclusions in a plate subjected to
uniaxial tension in « direction :

most largely at nearly @=135°. When Gi/Gu <1, the
effect of spacing is small in the range from L/d=1/3
to k/d=2/3; however, the difference is large between
a single inclusion (%/d=0) and double inclusions (%/d
=1/3~2/3).
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Fig. 6 Fiu, Fua. vs. @ relations at the corners A and B in
Fig.5 (4/L=10?, Gi/Gyx=10% Plane strain, vi=vn
=0.3)
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Fig. 7 Fuu, Fua vs. @ relations at the corners A and B in
Fig. 5 (4/L=10% Gi/Gn=107% Plane strain, vr=vu

=0.3)

4. Conclusions

In this paper, numerical solution of the singular
integral equation and interaction effect were consid-
ered in two rectangular inclusions as shown in Fig. 1.
Newly defined stress intensity factors at the corners
of inclusions were discussed under various geometri-
cal and loading conditions. The conclusions can be
made as follows.

(1) Inthe numerical solution of the singular inte-
gral equations of the body force method, the unknown
body force densities are approximated by a piecewise
smooth functions using power series and two types of
fundamental density functions, #4'™* and 74! (see Eq.

(3), (4) and Fig. 2). The calculation shows that the
present method yields rapidly converging results for
the wide range of geometrical and elastic conditions.
The difference between the results obtained from
different functions and the average values are within
about one percent.

(2) The interaction is large at the inside corner B
and small at the outside corner A regardless of load-
ing conditions. For example, when Gi//Gu=10°, /i/k=
10%, and %~/d=2/3 under longitudinal tension, Fi
value is about 509 of the value of a single inclusion at
the corner B and about 85% of the one at the corner
A.

(3) In the uniaxial tension in @ direction as
shown in Fig. 5, the interaction appears most largely
at nearly @=90° (y-direction) when G:/Gx >1. On the
other hand, when G;/Gx<1 the interaction appears
most largely at nearly @=135°. When Gi/Gx <1, the
effect of spacing is small in the range from k/d=1/3
to L/d=2/3; however, the difference is large between
a single inclusion (%/d=0) and double inclusions (%/d
=1/3~2/3).
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